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Abstract

We present a fully relativistic energy-conserving binary collision model for particle simulations with large density scale
plasmas. Our model deals with collisions between weighted particles of arbitrary species, conserving energy perfectly in
each collision while momentum is conserved on the average. We also discuss a new method to model extremely high den-
sities, applicable to a wide range of plasmas from the cold, non-relativistic to the ultra-relativistic regime in the high energy
density physics.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Recent advances in the development of intense short pulse lasers have led to exciting progress in high
energy density physics (HEDP). As an example, a several lm thin foil that is irradiated by a 100 TW, sub-pico-
second laser pulse reaches keV (1 keV � 11,000,000 �C) temperatures at solid density, while the electron dis-
tribution is temporarily far out of equilibrium, featuring two or more widely distinct temperatures. In
modeling such extreme plasmas, both kinetic- and collisional-effects on the energy transport are essential.
A particular difficulty is the large density gradients between critical density nc and solid density exceeding sev-
eral hundreds of nc. The critical density is the density where the laser is absorbed and nc = 1021 cm�3 for a
1 lm wavelength pulse. This means that a numerical model needs to describe the laser–plasma interaction
in the low density region, as well as fast particle transport in the extremely dense target region where Coulomb
collision processes are important for energy transfer. In the fast-ignitor scheme of laser fusion [1], the density
scale covers five orders of magnitude from the laser interaction region to the compressed core. Another
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example for a naturally occurring plasma with large density gradients is the ionosphere of our planet, in par-
ticular the polar outflow where the ion density changes by more than two orders of magnitude. Under such
conditions, simulations can be done more efficiently with using weighted particles than with using uniform
weighted particles, because huge number of particles are necessary in dense region in the case with uniform
particles otherwise we end up bad statistics in the low density plasmas. While being standard practice for
kinetic simulations, the use of weighted particles is less straightforward for the description of collisions. This
is one topic of the present article. Another difficulty arises from the extreme plasma densities in laser–solid
interaction or in the fast-ignitor scheme. Below we will describe a method that is designed to suppress numer-
ical instabilities. While we focus on a description of the numerical method, the implications for the physics will
be discussed elsewhere.

A binary Coulomb collision algorithm in cases where each particle represents the same fraction of the
particle density has been first presented by Shanny et al. [2], and extended to multi-component plasma
by Takizuka and Abe (1977) [TA77] for plasma simulations [3]. In TA77 both momentum and energy
are conserved perfectly for non-relativistic kinematics. Later, TA77 has been extended to relativistic kine-
matics and tested in the weakly relativistic regime by one of the authors [4]. Miller and Combi have devel-
oped an algorithm for weighted particle simulations employing Monte-Carlo techniques [5]. Their model has
been generalized to arbitrary particle weights by Nanbu and Yonemura (1998) [NY98] [6]. In the latter
approach, momentum and energy are not always conserved in each individual collision, but macroscopically
they are conserved on the average. This is permissible as long as there are enough particles, which is gen-
erally the case in Monte-Carlo simulations, but in typical HEDP Particle-in-Cell (PIC) simulations [7] the
number of particle per cell tends to be small (<100) for reasons of computational cost, resulting in an unac-
ceptable violation of energy/momentum conservation. Note that it is not possible to conserve both energy
and momentum in collisions between differently weighted particles exactly by modifying the equilibration
rates, but ignoring the weights in the collision kinematics. This leads to inaccurate modeling of bulk prop-
erties due to the local violation of energy/momentum conservation. We introduce a technique to improve
this problem.

The collision model described here is purely kinematic in nature, i.e. quantum effects are included only
through the limits for the impact parameter that enter the Coulomb logarithm. Effects, like the emission of
bremsstrahlung radiation by fast charged particles in matter, are not included at this point. One can estimate
the ratio of radiation losses to collisional losses for an electron with energy cmec

2 in a material with atomic
charge Z as dErad/dEcoll � aZc, where a is a constant coefficient. This ratio becomes unity, namely, the radi-
ation will become significant against the collisional-effect for an electron in air with c � 200 and 20 in lead [8,
Chapter 15]. This means that one can neglect radiation losses for laser-accelerated electrons at energies below
20 MeV. In Section 3.2, we show how radiation effects compare to collisional ones for a hydrogen plasma
(Fig. 4).

2. Relativistic binary collision model between weighted particles

We first present an advanced Coulomb collision model for small angle scattering between weighted particles
with fully relativistic kinematics. Our model features perfect energy conservation in individual collisions and
momentum conservation on the average, which is a great advantage for HEDP simulations in which the
numerical heating or energy violation must be very small to get an accurate laser energy coupling to plasmas.
After presenting the model, several test simulations are performed to demonstrate its validity.

2.1. Relativistic binary collision model

We begin by introducing a fully relativistic binary collision model for small angle Coulomb scattering. Pairs
of particles undergoing binary collisions are determined at random in each spatial cell. In PIC simulations, for
which this model was conceived, the simulation grid size should ideally coincide with the Debye length so that
one performs collisions between particles in a Debye sphere. This is consistent with the physical model of col-
lisions in a plasma. However, for all practical purposes the collision cell size only needs to be smaller than
typical density- and temperature-gradient lengths, while being large enough to provide good statistics for
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the collision operator. Apart from this, the result of the collision operator should be independent of the cell
size. Note that the computational cost of a TA77 type collision operator scales with the number of particles N,
as opposed to a full Boltzmann description of binary collisions which scales with N2.

The pairing procedures between particles are identical to TA77, and energy and momentum exchanges are
calculated for each pair, performed in the center-of-momentum (CM) frame of the two particles. Details are
described in Ref. [4]. Here we revise the calculation of the scattering angle in Ref. [4] by following strictly rel-
ativistic kinematics in order to make the model applicable to the ultra-relativistic regime.

2.1.1. Center-of-momentum frame

The kinematics of a relativistic collision between two particles with masses ma and mb and four-momenta
ðp0

a; paÞ
T and ðp0

b; pbÞ
T is best described in the center-of-momentum frame of reference (CM). Note that it is not

affected by the weight of the particles, as will be discussed below. The CM velocity is given by
vCM ¼
pa þ pb

p0
a þ p0

b

; cCM ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� vCM=c2
p : ð1Þ
The momenta pa,b as given in the laboratory frame of reference (LAB) are transformed into the CM frame by
a Lorentz transformation [8, Chapter 11]
P 0
a ¼ cCMðp0

a � vCM � paÞ ð2Þ

Pa ¼ pa þ
cCM � 1

v2
CM

ðvCM � paÞvCM � cCMp0
avCM: ð3Þ
Accordingly, for each particle ca;CM � P 0
a=ma, and velocities are Va = Pa/(maca,CM). The CM frame is defined

by
Pa þ Pb ¼ 0; ð4Þ

and throughout the collision process total momentum is conserved, i.e. the magnitude of momentum of each
particle is invariant
jPaj ¼ jPbj ¼ jP0aj ¼ jP0bj ¼ P ; ð5Þ
where P is the momentum amplitude.
The relative velocity between the two particles in the CM frame, required for the calculation of the collision

frequency, is given by
vrel ¼
Va � Vb

1� Va � Vb=c2
: ð6Þ
For the description of the scattering process in the code, we rotate the coordinate system of momentum space
to the system in which the Pz-axis is aligned with the momentum vector Pa of the first particle. This transfor-
mation is represented by
cos hR cos /R cos hR sin /R � sin hR

� sin /R cos /R 0

sin hR cos /R sin hR sin /R cos hR

0
B@

1
CA

P x

P y

P z

0
B@

1
CA ¼

0

0

P

0
B@

1
CA: ð7Þ
Here hR is the angle between Pz-axis and the vector Pa, and /R is the angle between Px–Pz plane, where Px-,
Py- and Pz-axis are for the CM frame. The inverse matrix calculation of Eq. (7) will be done after scattering to
rotate back to the CM frame. Note that the majority of the computer time consumed by the binary collision
operator is spent by randomizing and pairing particles, and not by calculating the collision kinematics.

2.1.2. Scattering angle in the CM frame

In the relativistic regime, the frequency of small angle scattering between particle species with charges ea

and eb is given by [10],
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mab ¼
4pðeaebÞ2nlL

p2
relvrel

; ð8Þ
where vrel(prel) is the relative velocity (momentum) between two particles. In the relativistic case, however, it is
defined as the velocity of one-particle in the rest frame of the other. We call this frame the one-particle-at-rest
(OPR) frame in the following discussion. ea and eb are the charge of each particle, nl is the lower density
among na and nb. The Coulomb logarithm is defined as L = log(1/hmin), where hmin is the smallest angle
for which the process can still be regarded as small angle Coulomb scattering. It is related to the distance
of closest approach between the two charges, namely the impact parameter b. In the classical case, hmin is
the scattering angle for which b is equal to the Debye length kD. The corresponding transverse momentum
transfer q � |eaeb|/kDvrel. Dividing q by the longitudinal momentum prel = mabvrel, we find
hmin � jeaebj=kDmabv2

rel, and L ¼ logðkDmabv2
rel=jeaebjÞ � logðk3

DnlÞ, where mab is the reduced mass. The condi-
tion for classical scattering is that |eaeb|/⁄vrel� 1, here ⁄is the Planck constant.

This condition is not satisfied in the relativistic case, so that the scattering must be treated quantum-
mechanically using the Born approximation [9]. Here the scattering cross-section is expressed in terms of
the Fourier component of the scattering potential with wave vector q/⁄. Now that minimum scattering angle
hmin is found from qminkD/⁄ � prelhminkD/⁄ � 1. In this case, then, L = log(kDprel/⁄) is expressed as the ratio of
the Debye length and the de Broglie wave length. Note here that |eaeb| � ⁄vrel corresponds to Te � 15 eV for
e–e collisions, so that we work in the Born approximation most of the time. Certainly, the expressions for the
Coulomb logarithm in the classical and quantum limits coincide at this threshold. Note here that in the cal-
culation of the Coulomb logarithm, we are not evaluating the background temperature. The relative energy
mabv2

rel is used as a temporal temperature, assuming that the averaged quantity would be close to the back-
ground temperature through a lot of samplings. Also the correct Coulomb logarithm for stopping power actu-
ally involves the fast particle velocity instead of the relative velocity [11]. Because we use the relative velocity as
the general formula, we have about a factor 2 difference in the logarithmic scale. Nevertheless, since it stands
in a logarithm, the resulting error is insignificant as shown in our test calculations. Having one general formula
for stopping and relaxation problems is useful for realistic problems, such as the laser–plasma interaction,
which has both the fast particle stopping and thermalization simultaneously.

To avoid a divergence of the collision frequency in cold plasma we have set a threshold for a degenerate
plasma [12]. The transition temperature T0 from the Spitzer regime to the degenerate regime is calculated
by the condition
T 0

mec2
¼

ffiffiffi
2
p

p3=2�h3nh

m3=2
e

 !2=3

; ð9Þ
at which the Spitzer collision frequency equals the one in the degenerate regime. Here nh is the higher density
among na and nb. A collision with less energy than T0 is treated as a collision in degenerate plasmas. The col-
lision frequency is then constant
mab ¼
4meZe4L

3p�h3
: ð10Þ
After calculating mab for a given pair of particles, the scattering angle h, greater than 0, is chosen randomly
from a Gaussian distribution with variance
htan2ðh=2Þi ¼ mabN cDt; ð11Þ

where the Dt is the time step and Nc is the number of time steps between subsequent sampling times for cal-
culation of the collision. This choice warrants that the resulting collision term is equal to that of a Fokker–
Planck equation [2]. Note that h is the scattering angle of the projectile particle in the OPR frame. We limit
the right hand side of Eq. (11) to 1/50. This means that the average scattering angle should be small in each
time step. This restriction assures that our model is close to multiple small angle scattering based on the central
limit theorem, which has a Gaussian distribution of scattering angles with a minimum scattering variance [8,
Chapter 13]. By excluding large angle scattering, we improve the phase space of particles with the limited
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number of particles per cell in simulations, since larger angle scattering would diffuse the phase space statis-
tically worse, especially in weighted particle simulations.

Since the momentum transfer is easily calculated in the center-of-momentum (CM) frame, h is transferred
to the CM frame. After scattering in OPR, the momentum P0 and the energy �0 in the CM are obtained by the
Lorentz transformation
�0

P0

� �
¼

ccm �bcmccm � I
�bcmccm � I ccm

� �
�L

PL

� �
; ð12Þ
where bcm is the reduced velocity of the CM system, and ccm is the Lorentz factor of the system. �L,
PL � (0, PL sinh,PL cosh) is the energy and the momentum of the projectile particle after the collision in
the OPR frame, respectively. Note here that PL and �L are not calculated because of the complexity in the
momentum and energy transfer in the OPR frame. We will do that in the CM frame after obtaining the scat-
tering angle hcm in the CM frame as described below. We assume here that the particle run along the z-axis
before collision for simplicity. Then,
�0

0

P 0 sin hcm

P 0 cos hcm

0
BBB@

1
CCCA ¼

ccm�L � bcmccmP L cos h

0

P L sin h

�bcmccm�L þ ccmP L cos h

0
BBB@

1
CCCA: ð13Þ
Eliminating P0, we have a relation of hcm and h,
tan hcm ¼
sin h

ccmðcos h� bcm=bÞ
; ð14Þ
where b is the reduced velocity after scattering in the OPR frame. Since b is not calculated yet, we used the
initial velocity to evaluate Eq. (14). Because we are treating the small angle scattering only, the energy transfer
rate is small and also the reduced velocity does not change much through collision in the relativistic case, this
approximation is justified. For the electron–ion collision, since me�M, bcm � 0 and ccm � 1, the scattering
angle in the CM, tanhcm, is approximately tanh. For the electron–electron collision in the non-relativistic re-
gime, bcm = b/2 and ccm � 1 make tanhcm � 2tanh, which agrees the classical scattering angular relation. In
the relativistic electron–electron collision, the scattering angle hcm is more than two times larger than h due to
the relativistic gamma effects.

2.1.3. Scattering process

Throughout each binary collision, the magnitude of the momentum P is constant, only its direction is
changed:
ð0; 0; P Þ ! ðP sin hcm cos /cm; P sin hcm sin /cm; P cos hcmÞ; ð15Þ
where the azimuthal angle /cm is uniformly distributed in the interval [0, 2p]. Then the momentum change of
the particle in the collision is given in the CM frame by the inverse rotation of Eq. (7), i.e.
DP x

DP y

DP z

0
B@

1
CA ¼

cos hR cos /R � cos hR sin /R sin hR

sin /R cos /R 0

� sin hR cos /R � sin hR sin /R cos hR

0
B@

1
CA

P sin hcm cos /cm

P sin hcm sin /cm

P cos hcm

0
B@

1
CA�

P x

P y

P z

0
B@

1
CA: ð16Þ
By using DP = (DPx,DPy,DPz), we get the momentum after the collision,
P0a ¼ Pa þ DP; ð17Þ
P0b ¼ Pb � DP: ð18Þ
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Finally, the particle momenta in the laboratory frame are obtained by
p0a ¼ P0a þ
cCM � 1

v2
CM

ðvCM � P0aÞvCM þ cCMP 0
avCM: ð19Þ
These calculations will be done for each binary pair.

2.2. Collisions between weighted particles

For simulations of particle transport in large density gradients, weighted particles are not only more effi-
cient than uniformly weighted ones but in some cases necessary due to limits of computer memory. Using
an appropriate pairing statistics, the Coulomb collision operator described in TA77 can be extended to
weighted particles. The scattering calculation is identical to the one described in the previous section. The
key difference to the TA77 operator is the fact that the heavier of the two particles is scattered with a finite
probability. Let us first describe the weighted particle collision operator presented in NY98 [6].

Let wai represent the weight of the ith particle of species a, and similarly, wbj is for jth particle of species b.
The number density of each species in a cell is then given by
na ¼
XNa

i

wai; nb ¼
XNb

j

wbj: ð20Þ
When the ith particle of species a collides with the jth particle of species b, the simulated particle ai undergoes a
collision with probability Pa = wbj/max(wai,wbj) and the particle bj does with probability Pb = wai/max(wai,wbj).
For example, wai = 2, wbj = 6, particle ai does collide with Pa = 1, means ai is scattered always. On the other
hand, bj does Pb = 2/6, which means that particle bj scattered in two of six collisions. By generating an uniformly
distributed random number r, (0 6 r < 1), particle bj is scattered only when r < Pb, reflecting the scattering prob-
ability; if r > Pb particle bj is not scattered. The idea of this so-called ‘rejection’ method is illustrated in Fig. 1a. It
is a common Monte-Carlo simulation technique [5]. However, this approach does not conserve energy and
momentum in each individual collision. This works well when Ncell� 103. But with Ncell 6 100 the statistic of
energy conservation is unacceptable. Note that particle weights are not included in the momentum transfer cal-
culation described in the previous section to treat differently weighted particles as particles of the defined species.

We propose an alternative way of scattering the heavier particle in which both the light particle ai and the
heavy one bj are always scattered, while bj undergoes only partial scattering depending on the scattering prob-
ability Pb as illustrated in Fig. 1b. In particular, only Pbwb sub-particles in bj are scattered. After that, the
heavier particle’s energy and momentum are merged in the particle bj by the following steps for energy,
�after
b ¼ �before

b � ð1� P bÞ þ �scattered
b � P b; ð21Þ
and for momentum,
pafter
b ¼ pbefore

b � ð1� P bÞ þ pscattered
b � P b: ð22Þ
particle αi particle βj

αi

βj

OR

(a) NY98

(b) SK07wα = 2 wβ = 6

Probability

pα
Pβ= 4/6

αi βj

Pβ= 2/6

Fig. 1. Collision between weighted particles. (a) NY98: rejection method; (b) SK07: merging method.
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We know that after these calculations, both energy and momentum ‘‘before” are conserved, but the momen-
tum pafter

b is not consistent with the energy �after
b anymore. The energy calculated based on the scattered momen-

tum pafter
b in this way is smaller than the particle energy given by Eq. (21). So we lose the momentum

somewhere in the merging process. In a physical sense, the collided particles and the rest do a quick thermal-
ization in a macro-particle, so that their ‘‘internal energy” increases.

To correct for this loss in energy, we add a perpendicular momentum to the pafter
b as a thermal momentum,
pfinal
b ¼ pafter

b þ Dpb?: ð23Þ
The magnitude of pb\ is calculated such that energy is conserved. Since this pb\ is chosen in the plane perpen-
dicular to pafter

b and pointing randomly in that plane, the total momentum is conserved on the average. The
thermal momentum is calculated by the following equation,
Djp?j ¼ mbc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
�after
b
� c2

pafter
b

q
; ð24Þ
where
c�after
b
¼ 1þ �after

b =mbc2; ð25Þ

cpafter
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpafter

b j2=mbc2

q
: ð26Þ
In NY98, there is another important idea of a common time increment per real particle in the weighted particle
collision. When the number of macro-particle in a cell, Na > Nb, the number of binary collisions is Na, and the
total number of collision of real particles through the binary collisions is
nab ¼
XNa

i

waiwbi

maxðwai;wbiÞ
: ð27Þ
To make the total number of collision of real particles equal to the case with uniformly weighted particles, we
adjust the time step by multiplying a factor,
Dt ¼ na

nab
Dt0: ð28Þ
This is a common time increment per real particle. Here Dt0 is the simulation time step. When Nb > Na, we use
Dt = (nb/nab)Dt0.

We illustrate an example of these processes in Fig. 2 to show this time adjustment idea more clearly. These
two cases show the same system (the same number of real particles), but it is described by the different manner.
Nc_macro = 10
nαβ = 10

Nc_macro : Number of binary collision
nαβ : Number of collision of real particles (defined by Eq. (28))

Nβ=2
nβ=2

Nα=4
nα=10

Nc_macro = 4
nαβ = 4 (not 10)

Nβ=2
nβ=2

Nα=10
nα=10

(a) uniform weighted particles (b) weighted particles

Fig. 2. Sample cases: (a) with uniform weighted particles; (b) weighted particles.
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‘Real’ particle means a particle which has a standard weight. In Case (a) of collisions with uniformly weighted
particles between species a and b, we have 10 binary collisions and also 10 real particle collisions. On the other
hand, Case (b) for weighted particle collisions has only four binary collisions. The number of real particles
which were collided is nab = 4. To adjust the total number of collision of real particles to make identical to
Case (a), the time step of Case (b) was adjusted by Eq. (28), Dt = (10/4) � Dt0. Since mDt represents the number
of events of collision in a time step Dt, the number of collision between real particles of Case (b) becomes sta-
tistically identical to the one of Case (a) through this process.

In the case of a and b are identical, the number of collision is N = Na/2 for even Na, and Na = (Na + 1)/2
for odd Na. The number of real particles that have collided is
naa ¼ 2
XN

i

w2i�1w2i

maxðw2i�1;w2iÞ
; ð29Þ
where a factor 2 comes from two particles identity. Then we can choose Dt = (na/naa)Dt0 as the simulation par-
ticle time step.

Since the number of collision of real particles in our model is the same in NY98, we do the same correction
of the time step when we calculate Eq. (11).

3. Applications

3.1. Energy transfer rate in relativistic electron–ion collision

The first test problem is checking the energy transfer rate from relativistic electrons to ions. All electrons
have the same initial energy but moving to randomly distributed direction: a shell distribution in momentum
space. Taking into account that a shell distribution has a

ffiffiffiffiffiffiffiffi
p=2

p
times higher equilibration rate than the Max-

wellian distribution, and expressing the energy by relativistic mechanics, we have the analytical exchange rate
[9],
dð1� Ei=EeÞ
dt

¼ 1� Ei

Ee

� �
8pz2e4nL

Mmec3ðc� 1Þ : ð30Þ
The corresponding simulation is done with the following parameters: density 1026cm�3, ion mass M = 1840me,
the electrons initial energy was set from 2 keV to 10 MeV. A constant Coulomb logL = 5 is used for simplic-
ity. This simulation is performed as a pure Monte-Carlo simulation, omitting particle motion or EM fields.
We chose extremely dense plasma not only to increase the energy transfer rate sufficiently high for conve-
nience, but it is the parameter range of the fast ignition core. We did 1000 time steps then calculated the left
hand side of Eq. (30) by evaluating the ion and electron total energy. Results are summarized in Fig. 3. The
simulation reproduces the theoretical prediction Eq. (30) very well from the non-relativistic regime to relativ-
istic regime. One simulation was performed with weighted particles, both electrons and ions have randomly
distributed weights from 0 to 2, making the average weight �1. This weighted simulation is consistent with
the theoretical prediction, too. This test also confirms that operating microscopic collisions by means of a
Monte-Carlo methods can give the same results as using the macroscopic quantities, like the average den-
sity/energy as like expressed by Eq. (30).

3.2. Stopping power of relativistic electrons in plasma

Energetic electrons stopping power is calculated in a hydrogen plasma with a mass density q = 12.5 g/cm3

and the initial temperature 5 keV. Both electron–electron and electron–ion collisions are included, but the elec-
tron–electron collision is the dominant process in stopping. So this is a good benchmark for the electron–elec-
tron collision. Here we use 100 test particles and make them averaged to obtain the stopping power. Again,
this simulation has been performed in a single cell. We did not solve the Maxwell equation in this simulation,
namely, this is a pure Monte-Carlo simulation. We calculated the DE/(‘q) in a first 100 time step, here ‘ is the
distance the particle can proceed in 100 time step. Changing the initial electron energy from 10 keV to 1 GeV,
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the stopping power is calculated and plotted in Fig 4 by solid circles. The stopping power in a hydrogen gas in
NIST data base are also shown in Fig. 4 as a reference. Note here that the Coulomb logarithm in the NIST
data is set by atomic physics while the plasma condition in our test. So the two cases are in different situation.
Nevertheless, the computational results show the similar trend from the non-relativistic to the ultra-relativistic
regime, except the radiation effect. The broken lines are the theoretical stopping power calculated by the Fok-
ker–Planck equation without radiative stopping in a plasma [15]. The simulated stopping power marked by
solid circles in Fig. 4 is reasonably agreed with the theoretical prediction for the binary collision in all energy
ranges.

4. Beam relaxation: benchmark of the weighted particle collision model

The final test is a simulation of electron beam relaxation by the weighted collision model. Initially electrons
have the Maxwellian distribution with thermal velocity vth = 0.001c, where c is the speed of light, and 10% of
the electrons drifting with a momentum 0.7mec. The total electron density is 1025 cm�3 and only e–e collision
was performed. This test is zero-dimensional in space and three-dimensional in velocity, i.e. our simulation
was performed with one spatial cell. Again, this is purely a Monte-Carlo test.
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Since there is no energy input from the outside, the total energy must be conserved through the simulation.
Simulations were performed with periodic boundaries with 10 cells by the three following models:

	 Case A (TA77): uniform weighted particle, 500 particles/cell (bulk 450, drifting 50).
	 Case B (NY98): weighted particle, 250 particles/cell (bulk 125, drifting 125) and 10 particles/cell (bulk 5,

drifting 5).
	 Case C (SK07; model described here): weighted particle, 250 particles/cell (bulk 125, drifting 125) and

10 particles/cell (bulk 5, drifting 5).

The case A is the uniform weighted simulation by TA77 and used here as a reference.
Fig. 5 shows the time evolution of the bulk electron energy. All three cases settle the same equilibrium

energy, �180, and have almost the same slope before being saturated. Note here that NY98 is less accurate
than our model due to violation of energy conservation. The total energy conservation is shown in Fig. 6a
for the case of NY98 and SK07 with 10 particles/cell. The total energy of NY98 has fluctuating error and
eventually exceeded 40%, which might be a serious problem in HEDP simulations. Both the TA77 and our
model have perfect energy conservation through the simulation. The momentum conservation is also
improved by our scheme as shown in Fig. 6b. We found that NY98 has about 5% error with 250 particles/cell
and needs more than 500 per cell to get a better statistics.

The energy spectrum was also checked in three cases and the results are plotted in Fig. 7. The spectrum
agrees well among them. These simulation results verify our approach in a treatment of the weighted particle
collision by adding the thermal perpendicular momentum to conserve the energy. The good accuracy even
with less number of particles is a great advantage for PIC simulations of HEDP.

5. Collisional reduced PIC model for large density scale plasma simulation

We have developed the collision model for weighted particles. Our model has the perfect energy conserva-
tion and the improved momentum conservation as discussed before. In this section, as an application of our
collision model we would like to introduce an unique technique to simulate large density scale plasmas, which
change the density from the kinetic to collisional regime. Such plasmas are important for the laser–plasma
experiments, e.g., the fast ignition in the laser fusion, and the astrophysical objects research. Our Particle-
in-Cell (PIC) code is PICLS, featuring a current-conserving integration scheme [16], a numerical disper-
sion-free Maxwell solver with the directional splitting scheme [7], which has been extended to the multi-dimen-
sional problems. Also PICLS has a fourth order current/force interpolation to suppress the numerical
instability causing under-resolving the Debye length. In general, it is challenging for PIC to simulate extremely



T
ot

al
 e

ne
rg

y 
er

ro
r 

[%
]

Time [1/ωp]

-10

0

 10

 20

 30

 40

0  100  200  300  400  500

SK07

NY98

SK07

NY98

TA77

T
ot

al
 m

om
en

tu
m

 e
rr

or
 [%

]

-10

0

 10

 20

 30

 40

Time [1/ωp]
0  100  200  300  400  500

a b

Fig. 6. Error of the total energy (a) and momentum (b) in the simulation with 10 particles/cell in the NY98 and the SK07 model.

 10

 102

 103

 104

 105

 106

0 20 40 60 80 100 120 140

C
ou

nt
 [1

/k
eV

]

Energy [keV]

TA77

the initial profile

SK07
NY98

drifting

 

 

 

 

 

bulk

Fig. 7. Energy spectra of three cases at the end of the simulation, t = 500. NY98 and SK07 used 250 particles/cell.

6856 Y. Sentoku, A.J. Kemp / Journal of Computational Physics 227 (2008) 6846–6861
dense and low temperature (less than 1 keV) plasmas, since the grid size of PIC is restricted by the plasma
Debye length, /

ffiffiffiffiffiffiffiffi
T=n

p
to avoid the numerical heating. Therefore, a PIC simulation for such dense and

low temperature plasmas requires huge number of grids (and also particles), and it is not realistic to perform
even with the current fastest super computers. We have adapted a fourth order interpolation scheme to eval-
uate fields and currents to reduce the numerical heating while expanding grid size to � the plasma skin length.
But still the computational cost is too expensive to simulate above a solid density plasmas, especially in multi-
dimensional calculations.

We propose a ‘‘reduced PIC” technique to perform such large density scale plasmas to reduce the compu-
tational cost drastically. This concept is based upon the physics of the collisional damping of kinetic effects in
dense plasmas [14]. The idea is illustrated in Fig. 8. Up to a certain density, here we call it npic, the kinetic
physics is fully resolved alongside collisional process. Above the density npic, the kinetic physics becomes less
important due to the collisional damping, and they are calculated with the reduced density npic. In this regime,
the simulation becomes more like a Monte-Carlo calculation as plasma density increases. We have studied this
threshold density and found that the kinetic physics will be damped at around ndamp � 1023 cm�3 in hydrogen
plasmas at thermal temperatures under 1 keV [14]. Above that density ndamp, plasma waves are damped and
the physics is dominated by collisional processes. Hence it is not necessary to resolve a small scale of the
kinetic physics there. By setting npic greater than ndamp, we can make sure that all of the important kinetic
physics are taken into account in the simulation. In the reduced PIC region, a particle located in a density



full PIC + collision reduced PIC + collision 

Damping density: ndamp

Boundary density: npic

Kinetic Collisional

x

Reduced area

Plasma density ne

(density for collision)

ωp=ωp(npic)ωp=ωp(ne)
Plasma frequency

Fig. 8. Concept of the reduced PIC simulation along collisions.
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n, which is higher than npic initially, is treated with a weight calculated by w = w0 � npic/n0 in the PIC calcula-
tion, as a result, the plasma frequency above npic is treated as xp(npic) in the kinetic physics. Here w0 is the
original particle weight. This treatment forces to satisfy the stability condition of the Maxwell solver, xpDt < 2
[13]. Note that for the collision operator the original particle weights are used to calculate the collision fre-
quency in the real plasma density, and there is no charge build up due to this reducing treatment in the
PIC calculation, because we implicitly check the divergence of E with charge density using the same cur-
rent-conserving scheme. Our reduced PIC scheme is not versatile. One needs to consider the physical situation,
especially about the collisional damping density, which might change dynamically with plasma heating. To
produce reliable results, theoretical aspects like those mentioned in Ref. [14] are important for the target phys-
ics. Each initial result should be checked with higher resolved simulations.

In the following, we demonstrate the reduced PIC technique with a 1D simulation of an intense laser pulse
interacting with a large density scale plasmas. The plasma density increases from 100nc to 4000nc behind the
slab target which is placed to stop the laser light, see Fig. 9. We used this range of density because it includes
the transition density from the kinetic to collisional regime even after the back ground plasmas were heated up
to keV, which was predicted from Fig. 1 in Ref. [14]. The laser intensity is 2.5 
 1019 W/cm2 with duration
500 fs. The dense slab plasma placed at around 13–18 lm to stop the laser light and produce energetic elec-
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trons, which will travel through the large density plasmas as shown in Fig. 9. The maximum plasma density in
the simulation is 4000nc. We performed two simulations, one by a fully resolved PIC simulation up to the max-
imum density. Here the ‘‘fully resolved PIC” means that it has a resolution of the plasma skin length (c/
xp � 0.004 lm) at the maximum density. The resolution used in the simulation is Dx = 0.0025 lm and
Dt = 0.00833 fs. The other one is the reduced simulation with npic = 600nc with 2.5 times bigger grid and time
step than the full resolved calculation. The ‘‘reduced” simulation has a resolution of the plasma skin length at
npic, but under resolved the higher densities, while keeping the stability condition of the Maxwell solver
xp(npic)Dt < 2. The both calculations used the same number of particle per cell, 200, initially and the density
profile is prepared with weighted particles. The initial plasma temperature was set to Te = Ti = 150 eV. To cal-
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culate 1 ps, the full (reduced) PIC needs 120,000 (48,000) time steps. Note here that we suppress the numerical
heating due to under-resolution of the Debye length of the initial temperature by adopting the fourth order
interpolation in the PIC calculation. This high order interpolation makes the numerical heating much slower
than the plasma heating via physical processes. In Fig. 10a and c shows the longitudinal electric field observed
at 165 fs (during the laser irradiation). Both plots show the same trend. In the reduced PIC results, the reduced
area is indicated with shading. The longitudinal fields are decaying at around 25 lm, where the plasma density
is a few hundred of the critical density. This damping density agrees well with the analytical prediction dis-
cussed in Ref. [14]. Both the electron and ion energy density plots also show the very good agreement between
the two calculations. The energy spectra observed in the reduced area (X > 30 lm ) are shown in Fig. 10e. This
is observed at the same time with plot (b) and (d). We see very good agreements between two cases both in the
high energy tail and bulk energy distribution. Based on these results, the reduced PIC simulation properly
describes the energy transport and transfer physics in the extremely dense region.

Fig. 11 shows the spectrum of the longitudinal electric fields observed in the high density region
(ne = 3200nc). We compare the spectra of a fully resolved simulation with and without collisions to one in
which we use the reduced PIC algorithm. The spectra show how collisions damp plasma oscillations before
the cutoff mode by about one order of magnitude, to a negligible level for the plasma heating. The energy
of particles oscillating in those fields is about 50 eV in the case without collisions, and less than 1 eV with col-
lisions. This means that the plasma is heated by the collisional processes dominantly, and not by plasma
waves. Obviously the high frequency modes, which appear in the collisional, fully resolved simulation, are
not resolved in the reduced calculation. Although we suppress these high frequency components in the reduced
calculation, this is justified because they are not important for the heating processes.

Next, we demonstrate the reduced PIC technique in a two-dimensional problem. We performed a 2D sim-
ulation of an intense laser pulse interacting with a slab target. The laser intensity is 5 � 1017 W/cm2 with a 5 lm
focus spot. A thin CD foil target with 5 lm thickness and 36 lm width is placed at the center of the simulation
box. The target is initially fully ionized and its density is 1.6 � 1023 cm�3, which is 160 times greater than the
critical density of the incident laser light. There is a pre-formed plasma in front of the target within 3 lm. We
perform two simulations; the first one is the fully resolved kinetic PIC simulation and the second is the reduced
PIC simulation. Both cases include collisions. For the fully resolved kinetic calculation, we have 1000 
 2000
meshes with 72 million particles to resolve the skin length in the target. The mesh size is small enough to
resolve the plasma skin length, Dx = (1/6) � c/xp for npic = 160nc. In the reduced PIC calculation, we reduced
the number of meshes and particles to 500 
 1000 and 18 million, which is one quarter of the fully resolved
kinetic simulation. The reduced calculation is 12 times faster than the fully resolved kinetic simulation. The
target density of kinetic simulation is set four times less, npic = 40nc. The damping density in these parameters
is expected to be a few 10 critical density [14]. In a case of more intense laser irradiation, the damping density
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Fig. 11. Spectrum of longitudinal electric fields observed in the dense plasmas (X = 37.5 lm, n = 3200nc).
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can be higher as a result of higher temperature in plasmas. In the reduced calculation, we need to pay attention
whether the damping density is reasonably less than the npic.

Fig. 12 shows the quasi-static magnetic fields at 130 and 260 fs for both cases. Inside the target quasi-static
magnetic fields grow due to an electromagnetic Weibel instability. Filaments reflect hot electrons and modify
electron transport. There is a reasonable agreement between the fully resolved kinetic simulation and the
reduced simulation, because collisions modify the Weibel instability scale length so that it is independent of
the scale length of the pure kinetic instability and collisional physics is dominant. Plot (e) shows the electron
energy spectrum inside the target. Again we see the very good agreement in the spectrum between the fully
resolved PIC and reduced PIC.

Fig. 12b and d shows the magnetic fields at the same time as (a) and (c), but without collisions. The size of
magnetic filaments appear inside the target in the reduced simulation is different from the ones in the full
kinetic simulation. Since the reduced PIC simulation does not resolve the kinetic physics of the skin length
scale in 160nc plasmas (it has a resolution of 40nc plasmas under the current set up), its result is meaningless
without collisions.

6. Summary

We discuss numerical methods for relativistic particle simulations for large density gradients. This includes
an advanced Coulomb collision model for large density scale plasma in wide particle energy range. Our model
has perfect energy conservation in scattering and statistical momentum conservation. This is a great advantage
to simulate HEDP with less number of particle per cell, still avoiding numerical energy violation, which is crit-
ical in HEDP problems. A relativistic collision operator is useful for relativistic particle transport physics in
dense plasmas, like the fast ignition in the laser fusion or relativistic astrophysical jet transport in space.
Benchmark simulations show the model validity in wide energy range with weighted particles. We also discuss
a novel method that suppresses the growth of numerical instabilities in simulations where the skin length is not
resolved. Comparisons with conventional PIC simulations show that this approach works.
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